Cardiovascular disease is a significant health concern worldwide, and varied effective treatment and prevention methods have been developed. Among these, tailored biomaterials-based strategies such as stents, scaffolds, patches, and drug delivery systems have emerged as a promising avenue. These devices are designed to match the mechanical and biological mechanisms of the cardiovascular system, ensuring optimal performance and compatibility.
View Article and Find Full Text PDFThis study presents a facile synthesis strategy for magnetic field-responsive PEGylated iron-supplement-coated rutile titanium dioxide (TiO) nanoparticles (NPs) for stimulus-responsive drug delivery. Imatinib, an anticancer drug, was successfully loaded into NPs, and its release was investigated under different pH conditions. XRD analysis confirmed the successful synthesis of PEGylated iron supplement-coated rutile titania NPs.
View Article and Find Full Text PDFAlthough -adrenoceptor ( -AR) signal transduction, which maintains cardiac function, is downregulated in failing hearts, the mechanisms for such a defect in heart failure are not fully understood. Since cardiac hypertrophy is invariably associated with heart failure, it is possible that the loss of -AR mechanisms in failing heart occurs due to hypertrophic process. In this regard, we have reviewed the information from a rat model of adaptive cardiac hypertrophy and maladaptive hypertrophy at 4 and 24 weeks after inducing pressure overload as well as adaptive cardiac hypertrophy and heart failure at 4 and 24 weeks after inducing volume overload, respectively.
View Article and Find Full Text PDFImmune checkpoint inhibitors (ICIs) are effective antitumor agents but are associated with immune-related adverse events. ICI-induced psoriasis commonly presents in patients with a history of psoriasis but may occur de novo, and it has a significant physical and psychosocial impact. ICI-induced and non-ICI-induced psoriasis are likely mediated by similar cytokines, and similar treatments are employed.
View Article and Find Full Text PDFHeart failure is the common concluding pathway for a majority of cardiovascular diseases and is associated with cardiac dysfunction. Since heart failure is invariably preceded by adaptive or maladaptive cardiac hypertrophy, several biochemical mechanisms have been proposed to explain the development of cardiac hypertrophy and progression to heart failure. One of these includes the activation of different neuroendocrine systems for elevating the circulating levels of different vasoactive hormones such as catecholamines, angiotensin II, vasopressin, serotonin and endothelins.
View Article and Find Full Text PDF