Publications by authors named "S S Bandyopadhyay"

Supercapacitors are rapidly gaining attention as next-generation energy storage devices due to their superior power and energy densities. This study pioneers the investigation of Mn/Zn co-doping in α-Cu₂V₂O₇ (CVO) to enhance its performance as a supercapacitor electrode material. Structural and local Structural properties of Mn/Zn co-doped CVO have been investigated through X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and X-ray Absorption Spectroscopy (XAS), revealing significant distortions that enhance supercapacitor performance.

View Article and Find Full Text PDF

A protocol for micropropagation of potato ( L.) cv. Cooch Behar local retaining the fidelity of the in vitro regenerants was established for the first time.

View Article and Find Full Text PDF

Background: National survey data show that age- and sex-standardized weight and length measurements decline early in Indian children. In population-level longitudinal data, early detection of growth trajectories is important for the implementation of interventions. We aimed to identify and characterize distinct growth trajectories of Indian children from birth to 12 months of age residing in urban and rural areas.

View Article and Find Full Text PDF

Stochastic neurons are extremely efficient hardware for solving a large class of problems and usually come in two varieties - "binary" where the neuronal state varies randomly between two values of ±1 and "analog" where the neuronal state can randomly assume any value between -1 and +1. Both have their uses in neuromorphic computing and both can be implemented with low- or zero-energy-barrier nanomagnets whose random magnetization orientations in the presence of thermal noise encode the binary or analog state variables. In between these two classes is n-ary stochastic neurons, mainly ternary stochastic neurons (TSN) whose state randomly assumes one of three values (-1, 0, +1), which have proved to be efficient in pattern classification tasks such as recognizing handwritten digits from the MNIST data set or patterns from the CIFAR-10 data set.

View Article and Find Full Text PDF

Voltage-gated ion channels (VGICs) are allosterically modulated by glycosaminoglycan proteoglycans and sialic acid glycans. However, the structural diversity and heterogeneity of these biomolecules pose significant challenges to precisely delineate their underlying structure-activity relationships. Herein, we demonstrate how heparan sulfate (HS) and sialic acid synthetic glycans appended on amphiphilic glycopeptide backbone influence cell membrane persistence and modulate the gating of the Kv2.

View Article and Find Full Text PDF