A selective fluorescence turn-on immunosensor for the specific detection of cardiac troponin I (cTnI), the potent biomarker for myocardial infarction diagnosis, was developed with a nano couple comprised of protein-stabilized gold nanocluster and gold nanoparticle. The red fluorescence of cTnI-specific antibody tagged bovine serum albumin stabilized gold nanoclusters was quenched with gold nanoparticles (AuNP) via the intensive interaction between amine and hydroxyl functionalities of BSA and AuNP. Through this, the adsorption of gold nanoclusters at the surface of AuNP, resulting in a core-satellite assembly, was assumed to quench the fluorescence emission.
View Article and Find Full Text PDFAims: To evaluate the feto-maternal outcome, identify the adverse outcome predictors and test the applicability of modified WHO (mWHO) classification in pregnant women with heart disease (PWWHD) from Tamil Nadu, India.
Methods And Results: One thousand and five pregnant women (mean age: 26.04 ± 4.
This study describes the development of a low-cost fluorescence assay for detecting homocysteine (Hcy) without the interference of cysteine and glutathione using carbon quantum dots. Herein nitrogen-doped carbon quantum dots (NCDs) were synthesized from citric acid as the carbon source and urea as the dopant using a one-pot microwave-assisted method. The obtained NCDs were incorporated with folic acid (FA) by the direct ex situ addition method and were used as a fluorescence probe to detect Hcy.
View Article and Find Full Text PDFThe present work is an attempt to investigate the heavy atom effect imparted by halide ions, especially iodide (I) ions on the fluorescence behavior of carbon dots (CDs). Here two different types of CDs viz. nitrogen doped carbon dots (NCDs) from Citric Acid (CA) & Urea and Sulfur and nitrogen co-doped carbon dots (S,N-CDs) from CA & L-Cysteine were synthesized and the fluorescence of both CDs were quenched by heavy atom effect on adding potassium iodide (KI).
View Article and Find Full Text PDF