Publications by authors named "S Roman-Roman"

Tebentafusp, a bispecific immune therapy, is the only drug that demonstrated an overall survival benefit in patients with metastatic uveal melanoma (MUM). Circulating tumor DNA (ctDNA) has emerged as a potential prognostic and predictive marker in the phase 3 IMCgp100-202 trial using multiplex PCR-based next-generation sequencing (NGS). In this study (NCT02866149), ctDNA dynamics were assessed using droplet digital PCR (ddPCR) in 69 MUM patients undergoing tebentafusp treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Centrosome amplification happens in cancer cells and can make them more unstable and aggressive.
  • Researchers found that this amplification helps cancer cells respond better to chemotherapy, resulting in increased cell death.
  • The study shows that cancer cells with more centrosomes might be ready to die when treated with chemotherapy, leading to better survival for patients with high centrosome numbers.
View Article and Find Full Text PDF

The combination of chemotherapy and targeted therapy has been validated in non-small-cell lung cancer (NSCLC) patients with mutations. We therefore investigated whether this type of combined approach could be more widely used by targeting other genetic alterations present in NSCLC. PDXs were generated from patients with NSCLC adenocarcinomas (ADCs) and squamous-cell carcinomas (SCCs).

View Article and Find Full Text PDF

Uveal melanoma is the most common primary intraocular malignancy in adults. Up to 50% of UM patients develop metastatic disease, usually in the liver. When metastatic, the prognosis is poor, and few treatment options exist.

View Article and Find Full Text PDF

Uveal melanoma (UM) is a rare cancer resulting from the transformation of melanocytes in the uveal tract. Integrative analysis has identified four molecular and clinical subsets of UM. To improve our molecular understanding of UM, we performed extensive multi-omics characterization comparing two aggressive UM patient-derived xenograft models with normal choroidal melanocytes, including DNA optical mapping, specific histone modifications, and DNA topology analysis using Hi-C.

View Article and Find Full Text PDF