Publications by authors named "S Roddaro"

CMOS-compatible materials for efficient energy harvesters at temperatures characteristic for on-chip operation and body temperature are the key ingredients for sustainable green computing and ultralow power Internet of Things applications. In this context, the lattice thermal conductivity (κ) of new group IV semiconductors, namely GeSn alloys, are investigated. Layers featuring Sn contents up to 14 at.

View Article and Find Full Text PDF

We report on resonance Raman spectroscopy measurements with excitation photon energy down to 1.16 eV on graphene, to study how low-energy carriers interact with lattice vibrations. Thanks to the excitation energy close to the Dirac point at K, we unveil a giant increase of the intensity ratio between the double-resonant 2D and 2D^{'} peaks with respect to that measured in graphite.

View Article and Find Full Text PDF

Generation of ultra high frequency acoustic waves in water is key to nano resolution sensing, acoustic imaging and theranostics. In this context water immersed carbon nanotubes (CNTs) may act as an ideal optoacoustic source, due to their nanometric radial dimensions, peculiar thermal properties and broad band optical absorption. The generation mechanism of acoustic waves in water, upon excitation of both a single-wall (SW) and a multi-wall (MW) CNT with laser pulses of temporal width ranging from 5 ns down to ps, is theoretically investigated via a multiscale approach.

View Article and Find Full Text PDF

We demonstrate a graphene-MoS architecture integrating multiple field-effect transistors (FETs), and we independently probe and correlate the conducting properties of van der Waals coupled graphene-MoS contacts with those of the MoS channels. Devices are fabricated starting from high-quality single-crystal monolayers grown by chemical vapor deposition. The heterojunction was investigated by scanning Raman and photoluminescence spectroscopies.

View Article and Find Full Text PDF

Recent experiments have shown the possibility of tuning the transport properties of metallic nanosized superconductors through a gate voltage. These results renewed the longstanding debate on the interaction between electrostatic fields and superconductivity. Indeed, different works suggested competing mechanisms as the cause of the effect: an unconventional electric field-effect or quasiparticle injection.

View Article and Find Full Text PDF