One-dimensional discrete-time population models, such as those that involve Logistic or Ricker growth, can exhibit periodic and chaotic dynamics. Expanding the system by one dimension to incorporate epidemiological interactions causes an interesting complexity of new behaviors. Here, we examine a discrete-time two-dimensional susceptible-infectious (SI) model with Ricker growth and show that the introduction of infection can not only produce a distinctly different bifurcation structure than that of the underlying disease-free system but also lead to counter-intuitive increases in population size.
View Article and Find Full Text PDFThe waning of immunity after recovery or vaccination is a major factor accounting for the severity and prolonged duration of an array of epidemics, ranging from COVID-19 to diphtheria and pertussis. To study the effectiveness of different immunity level-based vaccination schemes in mitigating the impact of waning immunity, we construct epidemiological models that mimic the latter's effect. The total susceptible population is divided into an arbitrarily large number of discrete compartments with varying levels of disease immunity.
View Article and Find Full Text PDFPrediction of cancer risk from space radiation exposure is critical to ensure spaceflight crewmembers are adequately informed of the risks they face when accepting assignments to ambitious long-duration exploratory missions. Although epidemiological studies have assessed the effects of exposure to terrestrial radiation, no robust epidemiological studies of humans exposed to space radiation exist to support estimates of the risk from space radiation exposure. Mouse data derived from recent irradiation experiments provides valuable information to successfully develop mouse-based excess risks models for assessing relative biological effectiveness for heavy ions that can provide information to scale unique space radiation exposures so that excess risks estimated for terrestrial radiation can be adjusted for space radiation risk assessment.
View Article and Find Full Text PDFNASA's currently planned long-duration, deep space exploration missions outside of low Earth orbit (LEO) will result in the exposure of astronauts to relatively high lifetime doses of ionizing radiation (IR), exceeding what humans have previously encountered in space. Of concern to this exposure are the long-term health consequences of radiation carcinogenesis, cardiovascular and degenerative disease, and central nervous system decrements. Existing engineering solutions are insufficient to decrease the lifetime accumulated IR exposure to levels currently allowable by agency standards, therefore appropriate countermeasure and mitigation strategies must be developed to enable long duration missions.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
November 2022
Concerns over the health effects of space radiation exposure currently limit the duration of deep-space travel. Effective biological countermeasures could allow humanity to break this limit, facilitating human exploration and sustained presence on the Moon, Mars, or elsewhere in the Solar System. In this issue, we present a collection of 20 articles, each providing perspectives or data relevant to the implementation of a countermeasure discovery and development program.
View Article and Find Full Text PDF