Hedonic and reinforcing properties of drugs of abuse are closely related to brain dopamine neuron activity. All these drugs increase dopamine release in the shell of the nucleus accumbens, a brain region in which neurons co-express the D1 (D1R) and D3 (D3R) dopamine receptor subtypes, that converging pharmacological, human post-mortem and genetic studies suggest to be implicated in drug addiction. The D3R through a cross-talk with the D1R, is involved in induction and expression of behavioral sensitization to levodopa in rats bearing unilateral lesions of dopamine neurons.
View Article and Find Full Text PDFBy using double in situ hybridization performed with proenkephalin and H3-receptor riboprobes on the same sections from rat brain, we show that histamine H3 receptors are expressed within striatopallidal neurons of the indirect movement pathway. The majority ( approximately 70%) of striatal enkephalin neurons express H3-receptor mRNAs. This important degree of coexpression of proenkephalin and H3-receptor mRNAs prompted us to explore the effect of H3-receptor ligands on the regulation of enkephalin mRNA expression in the striatum.
View Article and Find Full Text PDFInduction of dopamine D3 receptor gene expression in 6-hydroxydopamine-lesioned rats by repeated administration of levodopa had been suggested to be responsible for behavioural sensitization developing in these animals. Using double in situ hybridization techniques, we show that D3 receptor mRNA induction after repeated administration of levodopa took place mainly in dynorphin/substance P-expressing neurons of the direct striatonigral pathway. In agreement, induction of D3 receptor binding sites was evidenced, using 7-[3H]hydroxy-N,N-di-propyl-2-aminotetralin ([3H]7-OH-DPAT), in substantia nigra pars reticulata, the projection area of the direct nigrostriatonigral pathway.
View Article and Find Full Text PDFThe D3 receptor is recognized with high affinity by all antipsychotics and selectively expressed in limbic brain areas participating in the central of emotions, motivation and reward. In transfected cultured cells, stimulation of the D3 receptor inhibits cAMP formation and increases mitogenesis, which, in turn, is potentiated by activation of the cAMP cascade. This suggests that both opposite and synergistic interactions occur between the D3 receptor and the cydic AMP pathway, possibly underlying D1/D3 receptor interactions.
View Article and Find Full Text PDFUsing double in situ hybridization, we found extensive coexpression of dopamine D1 and D3 receptor (D1R and D3R) mRNAs in neurons of the island of Calleja major (ICjM) and ventromedial shell of nucleus accumbens (ShV), respectively. Thus, at least 79 and 63% of D3R mRNA-expressing neurons in ICjM and ShV also expressed the D1R mRNA. Coexpression of D1R and D3R mRNAs was found to occur in substance P (SP) mRNA-expressing neurons in both areas, suggesting SP mRNA as a marker of the activity of coexpressing neurons.
View Article and Find Full Text PDF