Syst Appl Microbiol
May 2024
The Pectobacteriaceae family comprises plant pathogens able to provoke diverse diseases, including plant maceration due to the production of pectinases disrupting the plant cell wall. To better understand their diversity, a survey of pectinolytic bacteria was performed in brackish lakes of the French region La Camargue near the Mediterranean Sea. The genome of six atypical isolates was sequenced; their size is around 4.
View Article and Find Full Text PDFDNA supercoiling is an essential mechanism of bacterial chromosome compaction, whose level is mainly regulated by topoisomerase I and DNA gyrase. Inhibiting either of these enzymes with antibiotics leads to global supercoiling modifications and subsequent changes in global gene expression. In previous studies, genes responding to DNA relaxation induced by DNA gyrase inhibition were categorised as 'supercoiling-sensitive'.
View Article and Find Full Text PDFDNA supercoiling acts as a global transcriptional regulator in bacteria, but the promoter sequence or structural determinants controlling its effect remain unclear. It was previously proposed to modulate the torsional angle between the -10 and -35 hexamers, and thereby regulate the formation of the closed-complex depending on the length of the 'spacer' between them. Here, we develop a thermodynamic model of this notion based on DNA elasticity, providing quantitative and parameter-free predictions of the relative activation of promoters containing a short versus long spacer when the DNA supercoiling level is varied.
View Article and Find Full Text PDFProkaryotic transcription was extensively studied over the last half-century. A great deal of data has been accumulated regarding the control of gene expression by transcription factors regulating their target genes by binding at specific DNA sites. However, there is a significant gap between the mechanistic description of transcriptional control obtained from in vitro biochemical studies and the complexity of transcriptional regulation in the context of the living cell.
View Article and Find Full Text PDFCarbon catabolite repression (CCR) plays a key role in many physiological and adaptive responses in a broad range of microorganisms that are commonly associated with eukaryotic hosts. When a mixture of different carbon sources is available, CCR, a global regulatory mechanism, inhibits the expression and activity of cellular processes associated with utilization of secondary carbon sources in the presence of the preferred carbon source. CCR is known to be executed by completely different mechanisms in different bacteria, yeast, and fungi.
View Article and Find Full Text PDF