Publications by authors named "S Restituito"

In the modern "omics" era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling.

View Article and Find Full Text PDF

Although considerable evidence suggests that the chemical synapse is a lynchpin underlying affective disorders, how molecular insults differentially affect specific synaptic connections remains poorly understood. For instance, Neurexin 1a and 2 (NRXN1 and NRXN2) and CNTNAP2 (also known as CASPR2), all members of the neurexin superfamily of transmembrane molecules, have been implicated in neuropsychiatric disorders. However, their loss leads to deficits that have been best characterized with regard to their effect on excitatory cells.

View Article and Find Full Text PDF

The proteolytic machinery comprising metalloproteases and γ-secretase, an intramembrane aspartyl protease involved in Alzheimer's disease, cleaves several substrates in addition to the extensively studied amyloid precursor protein. Some of these substrates, such as N-cadherin, are synaptic proteins involved in synapse remodeling and maintenance. Here we show, in rats and mice, that metalloproteases and γ-secretase are physiologic regulators of synapses.

View Article and Find Full Text PDF

Regulated transport and local translation of mRNA in neurons are critical for modulating synaptic strength, maintaining proper neural circuitry, and establishing long term memory. Neuronal RNA granules are ribonucleoprotein particles that serve to transport mRNA along microtubules and control local protein synthesis in response to synaptic activity. Studies suggest that neuronal RNA granules share similar structures and functions with somatic P-bodies.

View Article and Find Full Text PDF

AMPA receptor binding protein (ABP) is a multi-PDZ domain scaffold that binds and stabilizes AMPA receptor (AMPAR) GluR2/3 subunits at synapses. A palmitoylated N-terminal splice variant (pABP-L) concentrates in spine heads, whereas a non-palmitoylated form (ABP-L) is intracellular. We show that postsynaptic Sindbis viral expression of pABP-L increased AMPAR mediated mEPSC amplitude and frequency and elevated surface levels of GluR1 and GluR2, suggesting an increase in AMPA receptors at individual synapses.

View Article and Find Full Text PDF