Publications by authors named "S Reshanov"

Background: The resolution in electrostatic force microscopy (EFM), a descendant of atomic force microscopy (AFM), has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV) conditions to suppress viscous damping of the sensor.

View Article and Find Full Text PDF

Graphene is an outstanding electronic material, predicted to have a role in post-silicon electronics. However, owing to the absence of an electronic bandgap, graphene switching devices with high on/off ratio are still lacking. Here in the search for a comprehensive concept for wafer-scale graphene electronics, we present a monolithic transistor that uses the entire material system epitaxial graphene on silicon carbide (0001).

View Article and Find Full Text PDF

In this work, the transport properties of metal/3C-SiC interfaces were monitored employing a nanoscale characterization approach in combination with conventional electrical measurements. In particular, using conductive atomic force microscopy allowed demonstrating that the stacking fault is the most pervasive, electrically active extended defect at 3C-SiC(111) surfaces, and it can be electrically passivated by an ultraviolet irradiation treatment. For the Au/3C-SiC Schottky interface, a contact area dependence of the Schottky barrier height (ΦB) was found even after this passivation, indicating that there are still some electrically active defects at the interface.

View Article and Find Full Text PDF

Graphene, a single monolayer of graphite, has recently attracted considerable interest owing to its novel magneto-transport properties, high carrier mobility and ballistic transport up to room temperature. It has the potential for technological applications as a successor of silicon in the post Moore's law era, as a single-molecule gas sensor, in spintronics, in quantum computing or as a terahertz oscillator. For such applications, uniform ordered growth of graphene on an insulating substrate is necessary.

View Article and Find Full Text PDF