Background: Patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) are regularly treated with FOLFIRINOX, a chemotherapy regimen based on 5-fluorouracil, irinotecan and oxaliplatin, which is associated with high toxicity. Dosing of FOLFIRINOX is based on body surface area, risking under- or overdosing caused by altered pharmacokinetics due to interindividual differences in body composition. This study aimed to investigate the relationship between body composition and treatment toxicity in advanced stage PDAC patients treated with FOLFIRINOX.
View Article and Find Full Text PDFObjectives: Body composition assessment using CT images at the L3-level is increasingly applied in cancer research and has been shown to be strongly associated with long-term survival. Robust high-throughput automated segmentation is key to assess large patient cohorts and to support implementation of body composition analysis into routine clinical practice. We trained and externally validated a deep learning neural network (DLNN) to automatically segment L3-CT images.
View Article and Find Full Text PDFBMC Microbiol
June 2024
Background: 5-Fluorouracil (5-FU) is used as an antineoplastic agent in distinct cancer types. Increasing evidence suggests that the gut microbiota might modulate 5-FU efficacy and toxicity, potentially affecting the patient's prognosis. The current experimental study investigated 5-FU-induced microbiota alterations, as well as the potential of prebiotic fibre mixtures (M1-M4) to counteract these shifts.
View Article and Find Full Text PDFBackground: Cachexia-associated body composition alterations and tumor metabolic activity are both associated with survival of cancer patients. Recently, subcutaneous adipose tissue properties have emerged as particularly prognostic body composition features. We hypothesized that tumors with higher metabolic activity instigate cachexia related peripheral metabolic alterations, and investigated whether tumor metabolic activity is associated with body composition and survival in patients with non-small-cell lung cancer (NSCLC), focusing on subcutaneous adipose tissue.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
August 2024
Background: Cancer cachexia is a multifactorial metabolic syndrome characterized by systemic inflammation and ongoing skeletal muscle loss resulting in weakness, poor quality of life, and decreased survival. Whereas lipid accumulation in skeletal muscle is associated with cancer cachexia as well as the prognosis of cancer patients, surprisingly little is known about the nature of the lipids that accumulate in the muscle during cachexia, and whether this is related to inflammation. We aimed to identify the types and distributions of intramyocellular lipids in patients with and without cancer cachexia.
View Article and Find Full Text PDF