Publications by authors named "S Reisz-Porszasz"

Myostatin (Mst) is a negative regulator of skeletal muscle in humans and animals. It is moderately expressed in the heart of sheep and cattle, increasing considerably after infarction. Genetic blockade of Mst expression increases cardiomyocyte growth.

View Article and Find Full Text PDF

Background: Myostatin negatively regulates skeletal muscle growth. Myostatin knockout mice exhibit muscle hypertrophy and decreased interstitial fibrosis. We investigated whether a plasmid expressing a short hairpin interfering RNA (shRNA) against myostatin and transduced using electroporation would increase local skeletal muscle mass.

View Article and Find Full Text PDF

Inactivating mutations of the mammalian myostatin gene are associated with increased muscle mass and decreased fat mass; conversely, myostatin transgenic mice that overexpress myostatin in the skeletal muscle have decreased muscle mass and increased fat mass. We investigated the effects of recombinant myostatin protein and antimyostatin antibody on myogenic and adipogenic differentiation of mesenchymal multipotent cells. Accordingly, 10T(1/2) cells were incubated with 5'-azacytidine for 3 d to induce differentiation and then treated with a recombinant protein for myostatin (Mst) carboxy terminal 113 amino acids or a polyclonal anti-Mst antibody for 3, 7, and 14 d.

View Article and Find Full Text PDF

Mutations in the myostatin gene are associated with hypermuscularity, suggesting that myostatin inhibits skeletal muscle growth. We postulated that increased tissue-specific expression of myostatin protein in skeletal muscle would induce muscle loss. To investigate this hypothesis, we generated transgenic mice that overexpress myostatin protein selectively in the skeletal muscle, with or without ancillary expression in the heart, utilizing cDNA constructs in which a wild-type (MCK/Mst) or mutated muscle creatine kinase (MCK-3E/Mst) promoter was placed upstream of mouse myostatin cDNA.

View Article and Find Full Text PDF

Considerable heterogeneity exists in the anabolic response to androgen administration; however, the factors that contribute to variation in an individual's anabolic response to androgens remain unknown. We investigated whether testosterone dose and/or any combination of baseline variables, including concentrations of hormones, age, body composition, muscle function, and morphometry or polymorphisms in androgen receptor could explain the variability in anabolic response to testosterone. Fifty-four young men were treated with a long-acting gonadotropin-releasing hormone (GnRH) agonist and one of five doses (25, 50, 125, 300, or 600 mg/wk) of testosterone enanthate (TE) for 20 wk.

View Article and Find Full Text PDF