Publications by authors named "S Rawson"

Objective: To assess the feasibility and safety of talc pleurodesis performed as part of day-case medical thoracoscopy.

Methods: A Richard Wolf® 5 mm mini thoracoscope through a 5.5 mm port was used with eligible cases having talc poudrage followed by insertion of indwelling pleural catheter (IPC).

View Article and Find Full Text PDF
Article Synopsis
  • G-protein-coupled receptors (GPCRs) play a crucial role in regulating human physiology and are common targets for drugs, but selective binding of drugs to GPCRs is often limited.
  • Researchers developed specialized heavy-chain-only antibodies, known as 'nanobodies', that can selectively act as antagonists for the angiotensin II type I receptor, revealing unique mechanisms of how they block receptor activity.
  • The study demonstrates that these nanobodies can co-bind with small-molecule antagonists, providing a way to finely tune ligand selectivity, and highlights the potential of antibody fragments as advanced modulators for GPCRs in drug development.
View Article and Find Full Text PDF

Dedicated assembly factors orchestrate the stepwise production of many molecular machines, including the 28-subunit proteasome core particle (CP) that mediates protein degradation. Here we report cryo-electron microscopy reconstructions of seven recombinant human subcomplexes that visualize all five chaperones and the three active site propeptides across a wide swath of the assembly pathway. Comparison of these chaperone-bound intermediates and a matching mature CP reveals molecular mechanisms determining the order of successive subunit additions, as well as how proteasome subcomplexes and assembly factors structurally adapt upon progressive subunit incorporation to stabilize intermediates, facilitate the formation of subsequent intermediates and ultimately rearrange to coordinate proteolytic activation with gated access to active sites.

View Article and Find Full Text PDF

Many large molecular machines are too elaborate to assemble spontaneously and are built through ordered pathways orchestrated by dedicated chaperones. During assembly of the core particle (CP) of the proteasome, where protein degradation occurs, its six active sites are simultaneously activated via cleavage of N-terminal propeptides. Such activation is autocatalytic and coupled to fusion of two half-CP intermediates, which protects cells by preventing activation until enclosure of the active sites within the CP interior.

View Article and Find Full Text PDF

Dedicated assembly factors orchestrate stepwise production of many molecular machines, including the 28-subunit proteasome core particle (CP) that mediates protein degradation. Here, we report cryo-EM reconstructions of seven recombinant human subcomplexes that visualize all five chaperones and the three active site propeptides across a wide swath of the assembly pathway. Comparison of these chaperone-bound intermediates and a matching mature CP reveals molecular mechanisms determining the order of successive subunit additions, and how proteasome subcomplexes and assembly factors structurally adapt upon progressive subunit incorporation to stabilize intermediates, facilitate the formation of subsequent intermediates, and ultimately rearrange to coordinate proteolytic activation with gated access to active sites.

View Article and Find Full Text PDF