Convection plays a major part in many astrophysical processes, including energy transport, pulsation, dynamos and winds on evolved stars, in dust clouds and on brown dwarfs. Most of our knowledge about stellar convection has come from studying the Sun: about two million convective cells with typical sizes of around 2,000 kilometres across are present on the surface of the Sun-a phenomenon known as granulation. But on the surfaces of giant and supergiant stars there should be only a few large (several tens of thousands of times larger than those on the Sun) convective cells, owing to low surface gravity.
View Article and Find Full Text PDFContext: Recent observations at subarcsecond resolution, now possible also at submillimeter wavelengths, have shown intricate circumstellar structures around asymptotic giant branch (AGB) stars, mostly attributed to binary interaction. The results presented here are part of a larger project aimed at investigating the effects of a binary companion on the morphology of circumstellar envelopes (CSEs) of AGB stars.
Aims: AGB stars are characterized by intense stellar winds that build CSEs around the stars.
Early tendon healing can be stimulated by mechanical loading and inhibited by cyclooxygenase (COX) inhibitors (nonsteroidal anti-inflammatory drugs). Therefore, we investigated if impairment of tendon healing by a COX-2 inhibitor (parecoxib) is related to loading. Because loading might infer microdamage, which also stimulates healing, we also investigated if this effect is inhibited by parecoxib.
View Article and Find Full Text PDFThe asymptotic-giant-branch star R Sculptoris is surrounded by a detached shell of dust and gas. The shell originates from a thermal pulse during which the star underwent a brief period of increased mass loss. It has hitherto been impossible to constrain observationally the timescales and mass-loss properties during and after a thermal pulse--parameters that determine the lifetime of the asymptotic giant branch and the amount of elements returned by the star.
View Article and Find Full Text PDF