Pendrin is a Cl-/HCO3- exchanger expressed in the apical regions of renal intercalated cells. Following pendrin gene ablation, blood pressure falls, in part, from reduced renal NaCl absorption. We asked if pendrin is expressed in vascular tissue and if the lower blood pressure observed in pendrin null mice is accompanied by reduced vascular reactivity.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
March 2013
We and others have shown that epithelial Na(+) channels (ENaC) in alveolar type 2 (AT2) cells are activated by β2 agonists, steroid hormones, elevated oxygen tension, and by dopamine. Although acetylcholine receptors (AChRs) have been previously described in the lung, there are few reports of whether cholinergic agonists alter sodium transport in the alveolar epithelium. Therefore, we investigated how cholinergic receptors regulate ENaC activity in primary cultures of rat AT2 cells using cell-attached patch-clamp recordings to assess ENaC activity.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
February 2010
Altering the splice variant composition of large-conductance Ca(2+)-activated potassium (BK) channels can alter their activity and apparent sensitivity to Ca(2+) and other regulators of activity. We hypothesized that differences in the responsiveness to arachidonic acid of GH3 and GH4 cells was due to a difference in two splice variants, one present in GH3 cells and the other in GH4 cells. The sequences of the two splice variants differ from one another in several ways, but the largest difference is the presence or absence of 27 amino acids in the COOH terminus of the BK alpha-subunit.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
April 2006
Dopamine increases lung fluid clearance. This is partly due to activation of basolateral Na-K-ATPase. However, activation of Na-K-ATPase by itself is unlikely to produce large changes in transepithelial transport.
View Article and Find Full Text PDFProc Am Thorac Soc
September 2005
Amiloride-sensitive sodium channels in the lung play an important role in lung fluid balance. Particularly in the alveoli, sodium transport is closely regulated to maintain an appropriate fluid layer on the surface of the alveoli. Alveolar type II cells appear to play an important role in this sodium transport.
View Article and Find Full Text PDF