Cytosine is an essential chemical molecule in living systems, such as DNA and RNA, it is essential in astrobiology to study how it behaves under probable primitive conditions. We looked at how cytosine broke down in aqueous solutions exposed to high radiation levels to learn more about how stable it might have been on the early Earth. We conducted various types of analysis, such as ultraviolet-visible spectroscopy and high-pressure liquid chromatography.
View Article and Find Full Text PDFFormic acid is consistently produced and detected in prebiotic chemistry experiments, constituting a precursor of many carboxylic acids and amino acids. Its behavior with exposure to gamma radiation varies with the pH and solution concentration. This work aimed to model different environmental conditions for formic acid under ionizing radiation using a system of coupled differential equations based on chemical kinetics.
View Article and Find Full Text PDFThis study focuses on the radiolysis (up to 36 kGy) of guanine and adenine (nitrogenous bases) adsorbed in hectorite and attapulgite to highlight the potential role of clays as protective agents against ionizing radiation in prebiotic processes. In this framework, the study investigated the nitrogenous bases' behavior in two types of systems: a) aqueous suspension of adenine-clay systems and b) guanine-clay systems in the solid state. This research utilized spectroscopic and chromatographic techniques for its analytical purposes.
View Article and Find Full Text PDFThe abiotic synthesis of histidine under experimental prebiotic conditions has proven to be chemically promising and plausible. Within this context, the present results suggest that histidine amino acid may function as a simple prebiotic catalyst able to enhance amino acid polymerization. This work describes an experimental and computational approach to the self-assembly and stabilization of DL-histidine on mineral surfaces using antigorite ((Mg, Fe)SiO(OH)), pyrite (FeS), and aragonite (CaCO) as representative minerals of prebiotic scenarios, such as meteorites, and subaerial and submarine hydrothermal systems.
View Article and Find Full Text PDFIonizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields.
View Article and Find Full Text PDF