In this brief review, we introduce a new spin ladder system called skewed spin ladders and discuss the exotic quantum phases of this system. The spin ladders studied are the 5/7, 3/4 and 3/5 systems corresponding to alternately fused 5 and 7 membered rings; 3 and 4 membered rings; and 3 and 5 membered rings. These ladders show completely different behaviour as the Hamiltonian model parameter is changed.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbon (PAH) molecules such as quasi-unidimensional oligo-acene and fused azulene display interesting properties for increasing chain length. However, these molecules can be hard to explore computationally due to the number of atoms involved and the fast-increasing numerical cost when using many-body methods. The identification of magnetic PAH molecules is most relevant for technological applications and hence it would be of particular interest to develop rapid preliminary checks to identify likely candidates for both theoretical and experimental pursuits.
View Article and Find Full Text PDFIn recent years, polycyclic aromatic hydrocarbons (PAHs) have been studied for their electronic properties as they are viewed as nanodots of graphene. They have also been of interest as functional molecules for applications such as light-emitting diodes and solar cells. Since the last few years, varying structural and chemical properties corresponding to the size and geometry of these molecules have been studied both theoretically and experimentally.
View Article and Find Full Text PDFWe report studies of the correlated excited states of coronene and substituted coronene within the Pariser⁻Parr⁻Pople (PPP) correlated π -electron model employing the symmetry-adapted density matrix renormalization group technique. These polynuclear aromatic hydrocarbons can be considered as graphene nanoflakes. We review their electronic structures utilizing a new symmetry adaptation scheme that exploits electron-hole symmetry, spin-inversion symmetry, and end-to-end interchange symmetry.
View Article and Find Full Text PDFThere is a resurgence of interest in the electronic structure of perylene for its applications in molecular devices such as organic photovoltaics and organic light-emitting diodes. In this study, we have obtained the low-lying singlet states of perylene by exactly solving the Parisar-Parr-Pople model Hamiltonian of this system with 20 sites and 20 electrons in the VB basis where dimensionality is ∼5.92 billion.
View Article and Find Full Text PDF