This paper presents a novel technique for low-power generation of frequency combs (FC) over a wide frequency range. It leverages modal interactions between electrical and mechanical resonators in electrostatic NEMS operating in air to provide a simple architecture for FC generators. A biased voltage signal drives the electrical resonator at resonance which is set to match an integer submultiple of twice the mechanical resonator's resonance.
View Article and Find Full Text PDFBackground: Malnutrition, wasting, and obesity among children under 6 years old pose a serious global health concern, increasing the risk of various infectious and non-infectious diseases. Therefore, regular monitoring of these conditions is crucial. This study aimed to evaluate the prevalence of malnutrition in children under 6 years of age from 2018 to 2023.
View Article and Find Full Text PDFIn this study, we present an innovative approach leveraging combination internal resonances within a NEMS platform to generate mechanical soliton frequency combs (FCs) spanning a broad spectrum. In the time domain, the FCs take the form of a periodic train of narrow pulses, a highly coveted phenomenon within the realm of nonlinear wave-matter interactions. Our method relies on an intricate interaction among multiple vibration modes of a bracket-nanocantilever enabled by the strong nonlinearity of the electrostatic field.
View Article and Find Full Text PDFRadiation research is a multidisciplinary field, and among its many branches, mathematical and computational modelers have played a significant role in advancing boundaries of knowledge. A fundamental contribution is modelling cellular response to ionizing radiation as that is the key to not only understanding how radiation can kill cancer cells, but also cause cancer and other health issues. The invention of microdosimetry in the 1950s by Harold Rossi paved the way for brilliant scientists to study the mechanism of radiation at cellular and sub-cellular scales.
View Article and Find Full Text PDF