Dynamics of the driven Frenkel-Kontorova model with asymmetric deformable substrate potential is examined by analyzing response function, the largest Lyapunov exponent, and Poincaré sections for two neighboring particles. The obtained results show that the largest Lyapunov exponent, besides being used for investigating integral quantities, can be used for detecting microchanges in chain configuration of both damped Frenkel-Kontorova model with inertial term and its strictly overdamped limit. Slight changes in relative positions of the particles are registered through jumps of the largest Lyapunov exponent in the pinning regime.
View Article and Find Full Text PDFThe globalisation trend of the past few decades, driven to a large extent by the proliferation of GVCs, has led to a set of significant changes in patterns of technology upgrading and new modes of interaction between domestic technology efforts and external sources of technological knowledge. Whether this new dynamic will lead to continuing increase in the economic importance of emerging economies will ultimately depend on whether their productivity growth will be driven by technology upgrading, requiring active and coordinated activity orchestrated by a variety of state and non-state actors under diverse sectoral, regional and national innovation systems. The new dynamic also reinforces the focus on local-global interfaces which becomes ever more important once we recognize that in the 21st century technology upgrading challenges depend much more on improvements in connectivity and on the industrial ecosystem.
View Article and Find Full Text PDFWe demonstrate, using the example of the dc+ac driven overdamped Frenkel-Kontorova model, that an easily calculable measure of complexity can be used for the examination of Shapiro steps in the presence of thermal noise. In real systems, thermal noise causes melting or even disappearance of Shapiro steps, which makes their analysis in the standard way from the response function difficult. Unlike in the conventional approach, here, by calculating the Kolmogorov complexity of certain areas in the response function, we were able to detect Shapiro steps, measure their size with the desired precision, and examine their temperature dependence.
View Article and Find Full Text PDFThe dispersion relation for noninteracting excitons and the influence of perturbative corrections are examined in the case of pentacene structure. The values of exchange integrals are determined by nonlinear fits to the experimental dispersion data, obtained by the inelastic electron scattering reported in recent experiments. We obtain theoretical dispersion curves along four different directions in the Brillouin zone which possess the same periodicity as the experimental data.
View Article and Find Full Text PDFIn situ forming ophthalmic gels need to be fine tuned considering all the biopharmaceutical challenges of the front of the eye in order to increase drug residence time at the application site resulting in its improved bioavailability and efficacy. The aim of this study was to develop in situ forming ophthalmic poloxamer P407/poloxamer P188/chitosan gel fine tuned in terms of polymer content, temperature of gelation, and viscosity. Minimizing the total polymer content while retaining the advantageous rheological properties has been achieved by means of D-optimal statistical design.
View Article and Find Full Text PDF