Publications by authors named "S RUDMAN"

Using joint genomic-transcriptomic analysis of 243 samples, we reveal recurrent patterns of nongenetic evolution in ccRCC not exclusively governed by genetic factors, including T-cell depletion, tumor T-cell receptor coevolution, potential cGAS-STING repression, and increased cell proliferation. These patterns can aid clinical management and guide novel treatment approaches.

View Article and Find Full Text PDF

While the key aspects of genetic evolution and their clinical implications in clear cell renal-cell carcinoma (ccRCC) are well-documented, how genetic features co-evolve with the phenotype and tumor microenvironment (TME) remains elusive. Here, through joint genomic-transcriptomic analysis of 243 samples from 79 patients recruited to the TRACERx Renal study, we identify pervasive non-genetic intratumor heterogeneity, with over 40% not attributable to genetic alterations. By integrating tumor transcriptomes and phylogenetic structures, we observe convergent evolution to specific phenotypic traits, including cell proliferation, metabolic reprogramming and overexpression of putative cGAS-STING repressors amid high aneuploidy.

View Article and Find Full Text PDF

Acclimation and evolutionary adaptation can produce phenotypic changes that allow organisms to cope with challenges. Determining the relative contributions and the underlying mechanisms driving phenotypic shifts from acclimation and adaptation is of central importance to understanding animal responses to change. Rates of evolution have traditionally been considered slow relative to ecological processes that shape biodiversity.

View Article and Find Full Text PDF

Environmental risk assessment (ERA) is critical for protecting life by predicting population responses to contaminants. However, routine toxicity testing often examines only one genotype from surrogate species, potentially leading to inaccurate risk assessments, as natural populations typically consist of genetically diverse individuals. To evaluate the importance of intraspecific variation in translating toxicity testing to natural populations, we quantified the magnitude of phenotypic variation between 20 Daphnia magna clones exposed to two levels of microcystins, a cosmopolitan cyanobacterial toxin.

View Article and Find Full Text PDF

Phenotypic plasticity is a primary mechanism by which organismal phenotypes shift in response to the environment. Host-associated microbiomes often exhibit considerable shifts in response to environmental variation and these shifts could facilitate host phenotypic plasticity, adaptation, or rescue populations from extinction. However, it is unclear how much shifts in microbiome composition contribute to host phenotypic plasticity, limiting our knowledge of the underlying mechanisms of plasticity and, ultimately, the fate of populations inhabiting changing environments.

View Article and Find Full Text PDF