Numerical simulations of the tropical mesoscales often exhibit a self-reinforcing feedback between cumulus convection and shallow circulations, which leads to the self-aggregation of clouds into large clusters. We investigate whether this basic feedback can be adequately captured by large-eddy simulations (LESs). To do so, we simulate the non-precipitating, cumulus-topped boundary layer of the canonical "BOMEX" case over a range of numerical settings in two models.
View Article and Find Full Text PDFMotivated by an observed relationship between marine low cloud cover and surface wind speed, this study investigates how vertical wind shear affects trade-wind cumulus convection, including shallow cumulus and congestus with tops below the freezing level. We ran large-eddy simulations for an idealized case of trade-wind convection using different vertical shears in the zonal wind. Backward shear, whereby surface easterlies become upper westerlies, is effective at limiting vertical cloud development, which leads to a moister, shallower, and cloudier trade-wind layer.
View Article and Find Full Text PDFThe Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative-convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate.
View Article and Find Full Text PDFEnviron Monit Assess
November 2019
The objective of this research is to propose an artificial neural network (ANN) ensemble in order to estimate the hourly NO concentration at unsampled locations. Spatial interpolation methods and linear regression models with regularization have been compared to perform the ensemble. The study case is based on the region of the Bay of Algeciras (Spain).
View Article and Find Full Text PDFIn this work we study the dynamics of the surface-based temperature inversion over the Antarctic Plateau during the polar winter. Using 6 years of observations from the French-Italian Antarctic station Concordia at Dome C, we investigate sudden regime transitions in the strength of the near-surface temperature inversion. Here we define "near-surface" as being within the domain of the 45-m measuring tower.
View Article and Find Full Text PDF