Electron self-injection in laser wakefield accelerators (LWFAs) is an important determinator of electron beam parameters. Controllable and adjustable LWFA beams are essential for applications. Controlled injection by capturing sheath electrons can be achieved using plasma density down-ramps or bumps, which perturb the LWFA bubble phase velocity by varying the plasma frequency and by affecting relativistic self-focussing of the laser.
View Article and Find Full Text PDFOptimizing the laser wakefield accelerator (LWFA) requires control of the intense driving laser pulse and its stable propagation. This is usually challenging because of mode mismatching arising from relativistic self-focusing, which invariably alters the velocity and shape of the laser pulse. Here we show how an intense pre-pulse can prepare the momentum/density phase-space distribution of plasma electrons encountered by a trailing laser pulse to control its propagation.
View Article and Find Full Text PDF