Traumatic brain injury (TBI) is a leading cause of death and disability in pediatric patients and often results in delayed neural development and altered connectivity, leading to lifelong learning, memory, behavior, and motor function deficits. Induced pluripotent stem cell-derived neural stem cells (iNSCs) may serve as a novel multimodal therapeutic as iNSCs possess neuroprotective, regenerative, and cell-replacement capabilities post-TBI. In this study, we evaluated the effects of iNSC treatment on cellular, tissue, and functional recovery in a translational controlled cortical impact TBI piglet model.
View Article and Find Full Text PDFTraumatic brain injury (TBI), a significant global health issue, is affecting ∼69 million annually. To better understand TBI's impact on brain function and assess the efficacy of treatments, this study uses a novel temporal-spatial cross-group approach with a porcine model, integrating resting-state functional magnetic resonance imaging (rs-fMRI) for temporal and arterial spin labeling for spatial information. Our research used 18 four-week-old pigs divided into three groups: TBI treated with saline (SLN, = 6), TBI treated with fecal microbial transplant (FMT, = 6), and a sham group (sham, = 6) with only craniectomy surgery as the baseline.
View Article and Find Full Text PDFPediatric traumatic brain injury (TBI) often induces significant disability in patients, including long-term motor deficits. Early detection of injury severity is key in determining a prognosis and creating appropriate intervention and rehabilitation plans. However, conventional magnetic resonance imaging (MRI) scans, such as T2 Weighted (T2W) sequences, do not reliably assess the extent of microstructural white matter injury.
View Article and Find Full Text PDFBackground: Clinical efficacy of oral immunotherapy (OIT) has been associated with the induction of blocking antibodies, particularly those capable of disrupting IgE-allergen interactions. Previously, we identified mAbs to Ara h 2 and structurally characterized their epitopes.
Objective: We investigated longitudinal changes during OIT in antibody binding to conformational epitopes and correlated the results with isotype and clinical efficacy.
Immunoglobulin G (IgG) antibodies in the form of high-dose intravenous immunoglobulin (IVIG) exert immunomodulatory activity and are used in this capacity to treat inflammatory and autoimmune diseases. Reductionist approaches have revealed that terminal sialylation of the single asparagine-linked (N-linked) glycan at position 297 of the IgG1 Fc bestows antiinflammatory activity, which can be recapitulated by introduction of an F241A point mutation in the IgG1 Fc (FcF241A). Here, we examined the antiinflammatory activity of CHO-K1 cell-produced FcF241A in vivo in models of autoimmune inflammation and found it to be independent of sialylation.
View Article and Find Full Text PDF