Publications by authors named "S R Shingte"

Magnetic iron oxide nanoparticles have multiple biomedical applications in AC-field hyperthermia and magnetic resonance imaging (MRI) contrast enhancement. Here, two cubic particle suspensions are analyzed in detail, one suspension displayed strong magnetic heating and MRI contrast efficacies, while the other responded weakly. This is despite them having almost identical size, morphology, and colloidal dispersion.

View Article and Find Full Text PDF

We present a droplet microfluidic platform mixing the contents of the droplet chaotically in microfluidic induction time measurements, a promising method for quantifying nucleation kinetics with minute amounts of solute. The nucleation kinetics of aqueous potassium chloride droplets dispersed in mineral oil without surfactants is quantified in the presence and absence of chaotic mixing. We demonstrate the ability of the proposed platform to dictate droplet size, to provide a homogeneous temperature distribution, and to chaotically mix the droplet contents.

View Article and Find Full Text PDF

Hydrogels loaded with magnetic iron oxide nanoparticles that can be patterned and which controllably induce hyperthermic responses on AC-field stimulation are of interest as functional components of next-generation biomaterials. Formation of nanocomposite hydrogels is known to eliminate any Brownian contribution to hyperthermic response (reducing stimulated heating) while the Néel contribution can also be suppressed by inter-particle dipolar interactions arising from aggregation induced before or during gelation. We describe the ability of graphene oxide (GO) flakes to restore the hyperthermic efficiency of soft printable hydrogels formed using Pluronics F127 and PEGylated magnetic nanoflowers.

View Article and Find Full Text PDF

The use of an appropriate delivery system capable of protecting, translocating, and selectively releasing therapeutic moieties to desired sites can promote the efficacy of an active compound. In this work, we have developed a nanoformulation which preserves its magnetization to load a model anticancerous drug and to explore the controlled release of the drug in a cancerous environment. For the preparation of the nanoformulation, self-assembled magnetic nanospheres (MNS) made of superparamagnetic iron oxide nanoparticles were grafted with a monolayer of (3-aminopropyl)triethoxysilane (APTES).

View Article and Find Full Text PDF

Thorough knowledge of root canal morphology is essential for the endodontic therapy. Variations in the root and root canal morphology, especially in multirooted teeth, are a constant challenge for diagnosis and management. The dentist needs to be familiar with the various root canal configurations and their variations for successful endodontic therapy.

View Article and Find Full Text PDF