Publications by authors named "S R Niekamp"

Polycomb repressive complexes (PRCs) play a key role in gene repression and are indispensable for proper development. Canonical PRC1 forms condensates in vitro and in cells that are proposed to contribute to the maintenance of repression. However, how chromatin and the various subunits of PRC1 contribute to condensation is largely unexplored.

View Article and Find Full Text PDF

Polycomb repressive complexes (PRC) play a key role in gene repression and are indispensable for proper development. Canonical PRC1 forms condensates and in cells and the ability of PRC1 to form condensates has been proposed to contribute to maintenance of repression. However, how chromatin and the various subunits of PRC1 contribute to condensation is largely unexplored.

View Article and Find Full Text PDF

Quantitative fluorescence analysis is often used to derive chemical properties, including stoichiometries, of biomolecular complexes. One fundamental underlying assumption in the analysis of fluorescence data─whether it be the determination of protein complex stoichiometry by super-resolution, or step-counting by photobleaching, or the determination of RNA counts in diffraction-limited spots in RNA fluorescence hybridization (RNA-FISH) experiments─is that fluorophores behave identically and do not interact. However, recent experiments on fluorophore-labeled DNA origami structures such as fluorocubes have shed light on the nature of the interactions between identical fluorophores as these are brought closer together, thereby raising questions on the validity of the modeling assumption that fluorophores do not interact.

View Article and Find Full Text PDF

The motor protein dynein undergoes coordinated conformational changes of its domains during motility along microtubules. Previous single-molecule studies analyzed the motion of the AAA rings of the dynein homodimer, but not the distal microtubule-binding domains (MTBDs) that step along the track. Here, we simultaneously tracked with nanometer precision two MTBDs and one AAA ring of a single dynein as it underwent hundreds of steps using three-color imaging.

View Article and Find Full Text PDF

Photobleaching limits extended imaging of fluorescent biological samples. We developed DNA-based 'FluoroCubes' that are similar in size to the green fluorescent protein, have single-point attachment to proteins, have a ~54-fold higher photobleaching lifetime and emit ~43-fold more photons than single organic dyes. We demonstrate that DNA FluoroCubes provide outstanding tools for single-molecule imaging, allowing the tracking of single motor proteins for >800 steps with nanometer precision.

View Article and Find Full Text PDF