Publications by authors named "S R Nallapareddy"

The production of high-value biopharmaceuticals is dominated by mammalian production cells, particularly Chinese hamster ovary (CHO) cells, which have been widely used and preferred in manufacturing processes. The discovery of CRISPR-Cas9 significantly accelerated cell line engineering advances, allowing for production yield and quality improvements. Since then, several other CRISPR systems have become appealing genome editing tools, such as the Cas12a nucleases, which provide broad editing capabilities while utilizing short guide RNAs (gRNAs) that reduce the complexity of the editing systems.

View Article and Find Full Text PDF

Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine. As MIAs are difficult to chemically synthesize, the world's supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine.

View Article and Find Full Text PDF

Many branches of biology depend on stable and predictable recombinant gene expression, which has been achieved in recent years through targeted integration of the recombinant gene into defined integration sites. However, transcriptional levels of recombinant genes in characterized integration sites are controlled by multiple components of the integrated expression cassette. Lack of readily available tools has inhibited meaningful experimental investigation of the interplay between the integration site and the expression cassette components.

View Article and Find Full Text PDF

Cerebral oxygen delivery is central to the modern intensive care of patients with severe traumatic brain injury. Low brain tissue oxygen tension (PO) results from microvascular collapse and diffusion limitation and is associated with adverse outcome. A number of therapies to improve oxygen delivery are known to be effective in improving PO.

View Article and Find Full Text PDF

Recombinant Chinese hamster ovary (CHO) cells are able to provide biopharmaceuticals that are essentially free of human viruses and have N-glycosylation profiles similar, but not identical, to humans. Due to differences in N-glycan moieties, two members of the serpin superfamily, alpha-1-antitrypsin (A1AT) and plasma protease C1 inhibitor (C1INH), are currently derived from human plasma for treating A1AT and C1INH deficiency. Deriving therapeutic proteins from human plasma is generally a cost-intensive process and also harbors a risk of transmitting infectious particles.

View Article and Find Full Text PDF