Cellulose nanocrystals (CNCs) have inspired the synthesis of various advanced nanomaterials, opening opportunities for different applications. However, a simple and robust approach for transferring the long-range chiral nematic nanostructures into TiO photocatalyst is still fancy. Herein, a successful fabrication of freestanding TiO films maintaining their macroscopic chiral nematic structures after removing the CNCs biotemplate is reported.
View Article and Find Full Text PDFThis study aims to use diffusion tensor imaging (DTI) in conjunction with brain graph techniques to define brain structural connectivity and investigate its association with personal income (PI) in individuals of various ages and intelligence quotients (IQ). MRI examinations were performed on 55 male subjects (mean age: 40.1 ± 9.
View Article and Find Full Text PDFManipulation of light has been proved to be a promising strategy to increase light harvesting in solar-to-chemical energy conversion, especially in photocatalysis. Inverse opal (IO) photonic structures are highly promising for light manipulation as their periodic dielectric structures enable them to slow down light and localize it within the structure, thereby improving light harvesting and photocatalytic efficiency. However, slow photons are confined to narrow wavelength ranges and hence limit the amount of energy that can be captured through light manipulation.
View Article and Find Full Text PDFPeriodic structures with alternating refractive indices such as inverse opal photonic crystals are capable of reducing the group velocity of light such that this slowed light can be more efficiently harvested for highly enhanced solar energy conversion. However, the generation, the manipulation and, in particular, the practical applications of these slow photons remain highly challenging. Here, we report the first proof of concept on the ability to control, in an inverse opal TiO-BiVO hetero-composite, the transfer of slow photons generated from the inverse opal photonic structure to the photocatalytically active BiVO nanoparticles for highly enhanced visible light photoconversion.
View Article and Find Full Text PDFNano-optics explores linear and nonlinear phenomena at the nanoscale to advance fundamental knowledge about materials and their interaction with light in the classical and quantum domains in order to develop new photonics-based technologies. In this perspective article, we review recent progress regarding the application of nonlinear optical methods to reveal the links between photonic structures and functions of natural photonic geometries. Furthermore, nonlinear optics offers a way to unveil and exploit the complexity of the natural world for developing new materials and technologies for the generation, detection, manipulation, and storage of light at the nanoscale, as well as sensing, metrology, and communication.
View Article and Find Full Text PDF