Background: HIV infections often develop drug resistance mutations (DRMs), which can increase the risk of virological failure. However, it has been difficult to determine if minor mutations occur in the same genome or in different virions using Sanger sequencing and short-read sequencing methods. Oxford Nanopore Technologies (ONT) sequencing may improve antiretroviral resistance profiling by allowing for long-read clustering.
View Article and Find Full Text PDFObjective: To examine changes occurring in normal pelvic suspensory ligaments (SLs) of horses after denervating these ligaments and to investigate the effect chronic inflammation might have on these changes.
Animals: 10 horses.
Procedures: The SL of 1 randomly selected pelvic limb of each of 5 horses was injected with collagenase to induce desmitis, and 42 days later, the proximal aspect of both pelvic SLs were denervated.
J Clin Microbiol
January 2022
Bacterial pathogens that cannot be identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) are occasionally encountered in clinical laboratories. The 16S rRNA gene is often used for sequence-based analysis to identify these bacterial species. Nevertheless, traditional Sanger sequencing is laborious, time-consuming, and low throughput.
View Article and Find Full Text PDFThe increasing prevalence of N501Y variants of SARS-CoV-2 has kindled global concern due to their enhanced transmissibility. Genome sequencing is the gold standard method to identify the emerging variants of concern. But it is time-consuming and expensive, limiting the widespread deployment of genome surveillance in some countries.
View Article and Find Full Text PDFEffective thermal management is critical for the operation of many modern technologies, such as electronic circuits, smart clothing, and building environment control systems. By leveraging the static infrared-reflecting design of the space blanket and drawing inspiration from the dynamic color-changing ability of squid skin, we have developed a composite material with tunable thermoregulatory properties. Our material demonstrates an on/off switching ratio of ~25 for the transmittance, regulates a heat flux of ~36 W/m with an estimated mechanical power input of ~3 W/m, and features a dynamic environmental setpoint temperature window of ~8 °C.
View Article and Find Full Text PDF