Publications by authors named "S R J Salton"

Article Synopsis
  • - Dual specificity protein phosphatase 6 (DUSP6) is important in regulating late-onset Alzheimer's disease (AD), with lower DUSP6 levels linked to worse dementia ratings in humans and decreased levels observed in a mouse model of the disease.
  • - Researchers injected AAV5-DUSP6 into the brains of 5xFAD mice to increase DUSP6 expression and found that it improved memory deficits and reduced amyloid plaques in male mice but not in female mice, while also decreasing microglial activation in both sexes.
  • - Although DUSP6 overexpression helped reduce neuroinflammation and activated microglia in both male and female mice, the improvement in memory was sex-dependent, indicating different underlying mechanisms
View Article and Find Full Text PDF

DUSP4 is a member of the DUSP (dual-specificity phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized the stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5xFAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with the label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified protein expression and phosphorylation patterns modulated in 5xFAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5xFAD proteome/phosphoproteome.

View Article and Find Full Text PDF

DUSP4 is a member of the DUSP (Dual-Specificity Phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5xFAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified patterns of protein expression and phosphorylation that are modulated in 5xFAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5xFAD proteome/phosphoproteome.

View Article and Find Full Text PDF

DUSP4 is a member of the DUSP (Dual-Specificity Phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5×FAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified patterns of protein expression and phosphorylation that are modulated in 5×FAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5×FAD proteome/phosphoproteome.

View Article and Find Full Text PDF

Background: Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal network that regulates late-onset Alzheimer's disease. Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model.

Methods: AAV5-DUSP6 or AAV5-GFP (control) were stereotactically injected into the dorsal hippocampus (dHc) of female and male 5xFAD or wild type mice to overexpress DUSP6 or GFP.

View Article and Find Full Text PDF