Publications by authors named "S R Caplan"

The primary cilium is a crucial signaling organelle that can be generated by most human cells, and impediments to primary ciliogenesis lead to a variety of developmental disorders known as ciliopathies. The removal of the capping protein, CP110, from the mother centriole is a crucial early step that promotes generation of the ciliary vesicle and ciliogenesis. Recent studies have demonstrated that CP110 undergoes polyubiquitination and degradation in the proteosome, but the mechanisms of unfolding and removal from the mother centriole remain unknown.

View Article and Find Full Text PDF

Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission.

View Article and Find Full Text PDF

Accurate and reliable registration of longitudinal spine images is essential for assessment of disease progression and surgical outcome. Implementing a fully automatic and robust registration is crucial for clinical use, however, it is challenging due to substantial change in shape and appearance due to lesions. In this paper we present a novel method to automatically align longitudinal spine CTs and accurately assess lesion progression.

View Article and Find Full Text PDF

Young women increasingly get sexual health information from social media influencers, who use persuasive communication and can alter attitudes, intentions, and behaviors. Contraception is a commonly discussed health topic among influencers on social media. Previous research suggests that influencers negatively frame and encourage the discontinuation of hormonal contraception.

View Article and Find Full Text PDF

Endosome fission is required for the release of carrier vesicles and the recycling of receptors to the plasma membrane. Early events in endosome budding and fission rely on actin branching to constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic fission. However, our current understanding of this process is limited, particularly regarding the coordination between the early and late steps of endosomal fission.

View Article and Find Full Text PDF