The Notch pathway is critical for the development of the extracellular matrix in cartilage by regulating both anabolic and catabolic cellular activities. Similarly, Notch signaling plays a biphasic role in adult cartilage health and osteoarthritis by maintaining homeostasis and contributing to degeneration, respectively. The temporomandibular joint (TMJ) is the synovial joint of the craniofacial complex and is subject to injury and osteoarthritis.
View Article and Find Full Text PDFThe temporomandibular joint (TMJ) is a fibrocartilaginous tissue critical for chewing and speaking. In patients with temporomandibular disorders (TMDs), permanent tissue loss can occur. Recapitulating the complexity of TMDs in animal models is difficult, yet critical for the advent of new therapies.
View Article and Find Full Text PDFTherapeutic exercise training has been shown to significantly improve pulmonary hypertension (PH), including 6-min walking distance and right heart function. Supplemental nightly oxygen also has therapeutic effects. A biomarker tool that could query critical gene networks would aid in understanding the molecular effects of the interventions.
View Article and Find Full Text PDFAngiogenesis is a complex, multicellular process that is critical for bone development and generation. Endochondral ossification depends on an avascular cartilage template that completely remodels into vascularized bone and involves a dynamic interplay among chondrocytes, osteoblasts, and endothelial cells. We have discovered fibrocartilage stem cells (FCSCs) derived from the temporomandibular joint (TMJ) mandibular condyle that generates cartilage anlagen, which is subsequently remodeled into vascularized bone using an ectopic transplantation model.
View Article and Find Full Text PDFTissue regeneration using stem cell-based transplantation faces many hurdles. Alternatively, therapeutically exploiting endogenous stem cells to regenerate injured or diseased tissue may circumvent these challenges. Here we show resident fibrocartilage stem cells (FCSCs) can be used to regenerate and repair cartilage.
View Article and Find Full Text PDF