Most monogenic diseases can be viewed as conditions caused by dysregulated protein activity; therefore, drugs can be used to modulate gene expression, and thus protein level, possibly conferring clinical benefit. When considering repurposing drugs for loss of function diseases, there are three classes of genetic disease amenable to an increase of function; haploinsufficient dominant diseases, those secondary to hypomorphic recessive alleles, and conditions with rescuing paralogs. This therapeutic model then brings the questions: how frequently do such clinically useful drug-gene interactions occur and what is the most rapid and efficient route by which to identify them.
View Article and Find Full Text PDFBackground: T2DM is a high-risk pregnancy with adverse fetal and maternal outcomes including repeated miscarriages and fetal malformations. Despite the established association between placental insufficiency and poor maternal Th1-adaptability to the development of pregnancy complications in T2DM, there have been no established data to assess benefits of pre-pregnancy immunosuppression relative to gestational outcomes in T2DM. We hypothesized that pre-pregnancy macrolide immune suppression can re-establish normal placental development and uterine vascular adaptation in a mouse model of obesity-associated T2DM.
View Article and Find Full Text PDF