We report on the coherent excitation of the ultranarrow ^{1}S_{0}-^{3}P_{2} magnetic quadrupole transition in ^{88}Sr. By confining atoms in a state insensitive optical lattice, we achieve excitation fractions of 97(1)% and observe linewidths as narrow as 58(1) Hz. With Ramsey spectroscopy, we find coherence times of 14(1) ms, which can be extended to 266(36) ms using a spin-echo sequence.
View Article and Find Full Text PDFWe demonstrate coherent control of the fine-structure qubit in neutral strontium atoms. This qubit is encoded in the metastable ^{3}P_{2} and ^{3}P_{0} states, coupled by a Raman transition. Using a magnetic quadrupole transition, we demonstrate coherent state initialization of this THz qubit.
View Article and Find Full Text PDFThe collective absorption and emission of light by an ensemble of atoms is at the heart of many fundamental quantum optical effects and the basis for numerous applications. However, beyond weak excitation, both experiment and theory become increasingly challenging. Here, we explore the regimes from weak excitation to inversion with ensembles of up to 1000 atoms that are trapped and optically interfaced using the evanescent field surrounding an optical nanofiber.
View Article and Find Full Text PDFSingle particle-resolved fluorescence imaging is an enabling technology in cold-atom physics. However, so far, this technique has not been available for nanophotonic atom-light interfaces. Here, we image single atoms that are trapped and optically interfaced using an optical nanofiber.
View Article and Find Full Text PDFThe proliferation of chronic lymphocytic leukemia (CLL) cells requires communication with the lymphoid organ microenvironment. Integrin-linked kinase (ILK) is a multifunctional intracellular adaptor protein that transmits extracellular signals to regulate malignant cell motility, metastasis, and cell-cycle progression, but is poorly characterized in hematologic malignancies. In this study, we investigated the role of ILK in the context of CLL and observed high ILK expression in patient samples, particularly in tumor cells harboring prognostic high-risk markers such as unmutated IGHV genes, high Zap70, or CD38 expression, or a signature of recent proliferation.
View Article and Find Full Text PDF