The aerospace industry relies on Ti alloys owing to their strength-to-weight ratio and corrosion resistance. In metastable β-Ti alloys, slow cooling from the β-transus leads to partial transformation into coarse α laths, which is detrimental to the mechanical properties. A refinement and decrease of α laths has been previously achieved in β-Ti alloys with BC additions.
View Article and Find Full Text PDFUltramicroscopy
February 2024
Three-dimensional elemental mapping in atom probe microscopy provides invaluable insights into the structure and composition of interfaces in materials. Quasi-atomic resolution facilitates access to the solute decoration of grain boundaries, advancing the knowledge on local segregation and depletion phenomena. More recent developments unlocked three-dimensional mapping of the interfacial excess across grain boundaries.
View Article and Find Full Text PDFElectron backscatter diffraction (EBSD) generally links crystallographic orientation to the microstructure of crystalline materials. EBSD datasets are now commonly used to identify phases, grains, and their orientations using off-the-shelf software, although substantial additional information may be extracted. Due to the lack of commercially available software, advanced analyses are often done manually and provide only localised information, lacking statistical significance.
View Article and Find Full Text PDF3D electron backscatter diffraction (3D-EBSD) is a method of obtaining 3-dimensional crystallographic data through serial sectioning. The recent advancement of using a Xe plasma focused ion beam for sectioning along with a complementary metal-oxide semiconductor based EBSD detector allows for an improvement in the trade-off between volume analyzed and spatial resolution over most other 3D characterization techniques. Recent publications from our team have focused on applying 3D-EBSD to understand microstructural phenomena in Ti-6Al-4V microstructures as a function of electron beam scanning strategies in electron beam powder bed fusion additive manufacturing.
View Article and Find Full Text PDFPlasma focused ion beam microscopy (PFIB) is a recent nanofabrication technique that is suitable for site-specific atom probe sample preparation. Higher milling rates and fewer artifacts make it superior to Ga+ FIBs for the preparation of samples where large volumes of material must be removed, for example, when trying to avoid lift-out techniques. Transmission Kikuchi diffraction (TKD) is a method that has facilitated phase identification and crystallographic measurements in such electron transparent samples.
View Article and Find Full Text PDF