Objective: Whole genome sequencing (WGS) can help identify transmission of pathogens causing healthcare-associated infections (HAIs). However, the current gold standard of short-read, Illumina-based WGS is labor and time intensive. Given recent improvements in long-read Oxford Nanopore Technologies (ONT) sequencing, we sought to establish a low resource approach providing accurate WGS-pathogen comparison within a time frame allowing for infection prevention and control (IPC) interventions.
View Article and Find Full Text PDFIntroduction: Human Papillomavirus (HPV) is a widespread sexually transmitted infection and a leading cause of cervical cancer. Although there is a significant HPV prevalence in Ethiopia, yet the uptake of the HPV vaccine remains low. This study aimed to assess the level of caregivers' willingness to vaccinate their daughters against the human papilloma virus and associated factors in Jimma town.
View Article and Find Full Text PDFFocal Cortical Dysplasia (FCD) & Mesial Temporal Lobe Epilepsy-Hippocampal Sclerosis (MTLE-HS) are two common pathologies of drug-resistant focal epilepsy (DRE). Inappropriate localization of the epileptogenic zones (EZs) in FCD is a significant contributing factor to the unsatisfactory surgical results observed in FCD cases. Currently, no molecular or cellular indicators are available which can aid in identifying the epileptogenic zones (EZs) in FCD.
View Article and Find Full Text PDFMn-rich disordered rocksalt materials with Li-excess (DRX) materials have emerged as a promising class of earth-abundant and energy-dense next-generation cathode materials for lithium-ion batteries. Recently, an electrochemical transformation to a spinel-like "δ" phase has been reported in Mn-rich DRX materials, with improved capacity, rate capability, and cycling stability compared with previous DRX compositions. However, this transformation unfolds slowly over the course of cycling, complicating the development and understanding of these materials.
View Article and Find Full Text PDFRandomly moving active particles can be herded into directed motion by asymmetric geometric structures. Although such a rectification process has been extensively studied due to its fundamental, biological, and technological relevance, a comprehensive understanding of active matter rectification based on single particle dynamics remains elusive. Here, by combining experiments, simulations, and theory, we study the directed transport and energetics of swimming bacteria navigating through funnel-shaped obstacles-a paradigmatic model of rectification of living active matter.
View Article and Find Full Text PDF