Alcohol addiction is characterized by extensive alcohol consumption that dominates other behaviours previously important to a patient. According to data from The State Agency for Prevention of Alcohol-Related Problems, up to 900,000 people in Poland are addicted to alcohol. On average, approximately 9.
View Article and Find Full Text PDFBipolar membranes (BPMs), a special class of ion exchange membranes with the unique ability to electrochemically induce either water dissociation or recombination, are of growing interest for environmental applications including eliminating chemical dosage for pH adjustment, resource recovery, valorization of brines, and carbon capture. However, ion transport within BPMs, and particularly at its junction, has remained poorly understood. This work aims to theoretically and experimentally investigate ion transport in BPMs under both reverse and forward bias operation modes, taking into account the production or recombination of H and OH, as well as the transport of salt ions (e.
View Article and Find Full Text PDFAn efficient health care system combines maximum accessibility with high-quality treatments, as well as cost optimization of individual health care facilities throughout the entire system. In hospitals, the critical element is the number of beds within individual wards, which generates costs and, at the same time, affects the capacity to serve patients. The aim of this article is to discuss the restructuring and optimization of hospital bed occupancy in a healthcare facility in the Podkarpackie voivodeship.
View Article and Find Full Text PDFUnderstanding the salt-water separation mechanisms of reverse osmosis (RO) membranes is critical for the further development and optimization of RO technology. The solution-diffusion (SD) model is widely used to describe water and salt transport in RO, but it does not describe the intricate transport mechanisms of water molecules and ions through the membrane. In this study, we develop an ion transport model for RO, referred to as the solution-friction model, by rigorously considering the mechanisms of partitioning and the interactions among water, salt ions, and the membrane.
View Article and Find Full Text PDFMembrane capacitive deionization (MCDI) is a water desalination technology employing porous electrodes and ion-exchange membranes. The electrodes are cyclically charged to adsorb ions and discharged to desorb ions. During MCDI operation, a difference in pH between feed and effluent water is observed, changing over time, which can cause the precipitation of hardness ions and consequently affect the long-term stability of electrodes and membranes.
View Article and Find Full Text PDF