Microvasc Res
September 2019
Pre-study calculations of the required sample size are vital to a large majority of studies. Using the method based on the Monte-Carlo simulations, we have illustrated how the sample size is related to the statistic power value, the significance level, the variability of observations and the minor magnitude of the effect of interest under study. If the study has been already completed, one should not perform any 'post hoc' power calculations.
View Article and Find Full Text PDFThe focus of this paper is the determination of endothelial dysfunction in patients with metabolic syndrome (MetS) and the establishment of a relationship between the traditional biomarkers of endothelial dysfunction and the vascular tone regulation indices obtained from indirect cold tests in MetS patients. Our investigation was conducted on 30 patients aged 45.5±9 years.
View Article and Find Full Text PDFObjective: In this study, authors used a wavelet analysis of skin temperature (WAST) to assess the mechanisms of microvascular tone regulation during the local heating test in patients with diabetic foot syndrome (DFS).
Participants: The participants included control subjects and 36 hospitalized patients with DFS between 52 and 79 years old (68 ± 8 years old). They were distributed among 5 groups: 15 control subjects, 8 patients with DFS who did not develop ulcerative or necrotic disorders, 10 patients who developed the neuroischemic form of DFS complicated by foot ulceration, 12 patients with DFS complicated by toe necrosis, and 6 patients with DFS and foot gangrene.
J Clin Monit Comput
December 2017
There is a great need for early verification of the severity of acute pancreatitis (AP). The early stage of pathogenesis of AP is characterized by endothelial dysfunction which could be determined by wavelet analysis of skin temperature (WAST) technique. The aim is to investigate whether the dysregulation of microvascular tone caused by endothelial dysfunction and detected by WAST can be a significant indicator in early differential diagnosis of AP severity.
View Article and Find Full Text PDFThe aim of the study is to investigate the changes of the skin blood flow responses to cold stress in patients with diabetes mellitus type 2 through wavelet analysis of the peripheral skin temperature oscillations and to estimate their relationship with the blood viscosity values. The amplitudes of the skin temperature pulsations (ASTP) were monitored by "Microtest" device ("FM-Diagnostics", Russia); the whole blood viscosity and the shear stresses were measured by Contraves LS30 viscometer (Switzerland) at a steady flow in 9 healthy subjects and in 30 patients with type 2 diabetes mellitus. Power law and Herschel-Bulkley (HB) equations were applied to describe the blood rheology.
View Article and Find Full Text PDF