Zooplankton are major consumers of phytoplankton primary production in marine ecosystems. As such, they represent a critical link for energy and matter transfer between phytoplankton and bacterioplankton to higher trophic levels and play an important role in global biogeochemical cycles. In this Review, we discuss key responses of zooplankton to ocean warming, including shifts in phenology, range, and body size, and assess the implications to the biological carbon pump and interactions with higher trophic levels.
View Article and Find Full Text PDFThe threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions.
View Article and Find Full Text PDFIncreasing direct human pressures on the marine environment, coupled with climate-driven changes, is a concern to marine ecosystems globally. This requires the development and monitoring of ecosystem indicators for effective management and adaptation planning. Plankton lifeforms (broad functional groups) are sensitive indicators of marine environmental change and can provide a simplified view of plankton biodiversity, building an understanding of change in lower trophic levels.
View Article and Find Full Text PDFIntroduction: Quantitative measurements of retinal microvasculature by optical coherence tomography angiography (OCT-A) have been used to assess cardiovascular risk profile. However, to date, there are no studies focusing on OCT-A imaging in the setting of the altered hemodynamic status found in high-risk cardiovascular patients.
Methods: To determine the potential association between retinal vascular density on OCT-A and a comprehensive battery of hemodynamic variables in patients with myocardial infarction (MI) using data from the acute phase and at 3 months follow-up after cardiac rehabilitation.