Publications by authors named "S Pispas"

The emerging field of senolytics is centered on eliminating senescent cells to block their contribution to the progression of age-related diseases, including cancer, and to facilitate healthy aging. Enhancing the selectivity of senolytic treatments toward senescent cells stands to reduce the adverse effects associated with existing senolytic interventions. Taking advantage of lipofuscin accumulation in senescent cells, we describe here the development of a highly efficient senolytic platform consisting of a lipofuscin-binding domain scaffold, which can be conjugated with a senolytic drug via an ester bond.

View Article and Find Full Text PDF

Double hydrophilic, random, hyperbranched copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) utilizing ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resulting copolymers were characterized in terms of their molecular weight and dispersity using size exclusion chromatography (SEC), and their chemical structure was confirmed using FT-IR and H-NMR spectroscopy techniques. The choice of the two hydrophilic blocks and the design of the macromolecular structure allowed the formation of self-assembled nanoparticles, partially due to the pH-responsive character of the DMAEMA segments and their interaction with -COOH end groups remaining from the chain transfer agent.

View Article and Find Full Text PDF

Through this study, the synergistic behavior of small-molecular-weight, amphiphilic surfactant molecules and the triblock copolymer Pluronic 188 was extensively evaluated based on their ability to formulate nanocarriers with novel properties for the delivery of class II and IV (biopharmaceutical classification system) chemotherapeutic compounds. The combination of four different surfactants at multiple weight ratios and twelve initially formulated nanosystems resulted in four hybrid delivery platforms, which were further studied in terms of multiple physicochemical characteristics, as well as their stability in protein-rich media (fetal bovine serum/phosphate-buffer saline). Finally, we obtained a single final nanoformulation that exhibited a high loading capacity (%EE ≥ 75%) and a sustained drug release profile under physiological conditions (model drug methotrexate), without altering the original physicochemical characteristics of the carrier.

View Article and Find Full Text PDF

Natural polysaccharides can serve as carriers of genes owing to their intrinsic biocompatibility, biodegradability, and low toxicity. Additionally, they can be easily chemically modified, e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored the self-assembly and dynamics of double hydrophilic block copolymers (DHBCs) using various techniques like calorimetry and X-ray scattering.
  • The results showed weak segregation and homogeneous molecular dynamics, with signs of intermixed nanodomains leading to unique glass transition behaviors.
  • Notably, the study identified two glass transition temperatures in dry PVBTMAC for the first time, highlighting the significant mixing of the two homopolymers and the potential for tailoring their properties through concentration adjustments.
View Article and Find Full Text PDF