Publications by authors named "S Pien"

Epigenetic control of plant development via histone modifications is involved in different processes ranging from embryonic development, vegetative development, flowering time control, floral organ development, to pollen tube growth. The identification of an increasing number of epigenetically regulated processes was greatly advanced by methods allowing the survey of genome-wide histone modifications and chromatin-protein interactions. However, genome-wide approaches are too broad to access in detail a large number of histone modifications taking place at a single locus.

View Article and Find Full Text PDF

Epigenetic gene regulation via histone modifications controls different processes ranging from embryonic development, vegetative development, floral induction, floral organ development, to pollen tube growth. The identification of an increasing number of epigenetically regulated processes was greatly advanced by genome-wide histone modification and chromatin-protein interaction surveys. However, genome-wide approaches are too global to access in detail a large number of histone modifications taking place at a single locus.

View Article and Find Full Text PDF

Trithorax function is essential for epigenetic maintenance of gene expression in animals, but little is known about trithorax homologs in plants. ARABIDOPSIS TRITHORAX1 (ATX1) was shown to be required for the expression of homeotic genes involved in flower organogenesis. Here, we report a novel function of ATX1, namely, the epigenetic regulation of the floral repressor FLOWERING LOCUS C (FLC).

View Article and Find Full Text PDF

Seed development starts at double fertilization when two sperms fuse with a female gamete, the egg and central cell, giving rise to the embryo and endosperm, respectively. Uniting two parental genomes into one, unique, zygotic genome is certainly the first event requiring large-scale chromatin modifications and remodeling. Although little is known about the molecular mechanisms, recent progress was made allowing live imaging of parental chromatin dynamics at fertilization.

View Article and Find Full Text PDF