The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138 fb^{-1} of proton-proton collision data at sqrt[s]=13 TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics.
View Article and Find Full Text PDFUsing proton-proton collision data corresponding to an integrated luminosity of collected by the CMS experiment at , the decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the decay, is measured to be , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in and .
View Article and Find Full Text PDFA search for collective effects inside jets produced in proton-proton collisions is performed via correlation measurements of charged particles using the CMS detector at the CERN LHC. The analysis uses data collected at a center-of-mass energy of sqrt[s]=13 TeV, corresponding to an integrated luminosity of 138 fb^{-1}. Jets are reconstructed with the anti-k_{T} algorithm with a distance parameter of 0.
View Article and Find Full Text PDFComput Softw Big Sci
September 2024
Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of sqrt[s]=13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb^{-1}. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom.
View Article and Find Full Text PDF