Green and digital transitions will induce tremendous demand for metals and semiconductors. This raises concerns about the availability of materials in the rather near future. Addressing this challenge requires an unprecedented effort to discover new materials that are more sustainable and also to expand their functionalities beyond conventional material limits.
View Article and Find Full Text PDFDespite recent advances in exfoliated vdW ferromagnets, the widespread application of 2D magnetism requires a Curie temperature (T) above room temperature as well as a stable and controllable magnetic anisotropy. Here we demonstrate a large-scale iron-based vdW material FeGeTe with the T reaching ~530 K. We confirmed the high-temperature ferromagnetism by multiple characterizations.
View Article and Find Full Text PDFSpintronics exploit spin-orbit coupling (SOC) to generate spin currents, spin torques, and, in the absence of inversion symmetry, Rashba and Dzyaloshinskii-Moriya interactions. The widely used magnetic materials, based on 3d metals such as Fe and Co, possess a small SOC. To circumvent this shortcoming, the common practice has been to utilize the large SOC of nonmagnetic layers of 5d heavy metals (HMs), such as Pt, to generate spin currents and, in turn, exert spin torques on the magnetic layers.
View Article and Find Full Text PDFEngineering of magnetic materials for developing better spintronic applications relies on the control of two key parameters: the spin polarization and the Gilbert damping, responsible for the spin angular momentum dissipation. Both of them are expected to affect the ultrafast magnetization dynamics occurring on the femtosecond timescale. Here, engineered Co MnAl Si Heusler compounds are used to adjust the degree of spin polarization at the Fermi energy, P, from 60% to 100% and to investigate how they correlate with the damping.
View Article and Find Full Text PDFHarnessing chaos or intrinsic nonlinear behaviours of dynamical systems is a promising avenue toward unconventional information processing technologies. In this light, spintronic devices are promising because of the inherent nonlinearity of magnetization dynamics. Here, we demonstrate experimentally the potential for chaos-based schemes using nanocontact vortex oscillators by unveiling and characterizing their waveform patterns and symbolic dynamics using time-resolved electrical measurements.
View Article and Find Full Text PDF