Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited. This limited plasticity serves as a primary barrier to functional recovery after brain injury. Neuromodulation technologies represent one of the fastest-growing fields in medicine.
View Article and Find Full Text PDFFerroptosis is a newly discovered form of cell death that is influenced by iron levels and is triggered by cellular metabolism and excessive lipid peroxidation. Epigenetic regulation plays a crucial role in the development and progression of diseases, making it essential to understand these mechanisms in order to identify potential targets for drug development and clinical treatment. The intersection of ferroptosis and epigenetics has opened up new avenues for research in drug development, offering innovative strategies for combating diseases.
View Article and Find Full Text PDFAcetaminophen (APAP) stands as one of the most prevalent triggers of drug-induced acute liver injury (ALI). The intricate modulation of immune system activation and inflammatory cascades by hepatic immune cells is paramount in managing liver injury and subsequent restoration. In this study, we employed an integrative approach that fused our proprietary flow cytometry analyses across various time points post-APAP injury with publicly available single-cell RNA sequencing (scRNA-seq) datasets, encompassing time-series data from liver tissue of mice subjected to APAP intoxication.
View Article and Find Full Text PDFOxidative stress plays a critical role in postmenopausal osteoporosis, yet its impact on osteoblasts remains underexplored, limiting therapeutic advances. Our study identifies phospholipid peroxidation in osteoblasts as a key feature of postmenopausal osteoporosis. Estrogen regulates the transcription of glutathione peroxidase 4 (GPX4), an enzyme crucial for reducing phospholipid peroxides in osteoblasts.
View Article and Find Full Text PDF