Early life stress can result in depression in humans and depressive-like behaviour in rodents. In various animal models of depression, the lateral habenula (LHb) has been shown to become hyperactive immediately after early life stress. However, whether these pathological changes persist into adulthood is less well understood.
View Article and Find Full Text PDFCortical GABAergic interneurons have been shown to fulfil important roles by inhibiting excitatory principal neurons. Recent transcriptomic studies have confirmed seminal discoveries that used anatomic and electrophysiological methods highlighting the existence of multiple different classes of GABAergic interneurons. Although some of these studies have emphasized that inter-regional differences may exist for a given class, the extent of such differences remains unknown.
View Article and Find Full Text PDFThe hippocampal formation is anatomically and functionally divided into a dorsal and a ventral part, being involved in processing cognitive tasks and emotional stimuli, respectively. The ventral subiculum as part of the hippocampal formation projects to the medial prefrontal cortex (mPFC), but only very little is known about connections arising from the dorsal SUB (dSUB). Here, we investigate the dSUB to mPFC connectivity in acute brain slices using electrophysiology and optogenetics.
View Article and Find Full Text PDFThe lateral habenula (LHb) is a brain structure which is known to be pathologically hyperactive in depression, whereby it shuts down the brains' reward systems. Interestingly, inhibition of the LHb has been shown to have an antidepressant effect, hence making the LHb a fascinating subject of study for developing novel antidepressant therapies. Despite this however, the exact mechanisms by which inhibitory signalling is processed within the LHb remain incompletely understood.
View Article and Find Full Text PDFBackground/objectives: Obesity is strongly associated with leptin resistance. It is unclear whether leptin resistance results from the (over)consumption of energy-dense diets or if reduced leptin sensitivity is also a pre-existing factor in rodent models of diet-induced obesity (DIO). We here tested whether leptin sensitivity on a chow diet predicts subsequent weight gain and leptin sensitivity on a free choice high-fat high-sucrose (fcHFHS) diet.
View Article and Find Full Text PDF