Publications by authors named "S Pescetelli"

Article Synopsis
  • - Perovskite solar cells are promising for future solar technology, but their commercialization is hindered by stability issues, with current aging tests lacking reliability.
  • - A new industrial encapsulation process using a highly viscous adhesive helps reduce stress at key interfaces and incorporates hexagonal boron nitride to enhance thermal and barrier properties.
  • - This encapsulation method has proven effective in prolonged aging tests, maintaining over 80% efficiency, and is adaptable for various cell types, including semi-transparent designs for building-integrated solar applications.
View Article and Find Full Text PDF

Laser-induced graphene (LIG) has emerged as a highly versatile material with significant potential in the development of electrochemical sensors. In this paper, we investigate the use of LIG and LIG functionalized with ZnO and porphyrins-ZnO as the gate electrodes of the extended gate field effect transistors (EGFETs). The resultant sensors exhibit remarkable sensitivity and selectivity, particularly toward ascorbic acid.

View Article and Find Full Text PDF

MXenes are two-dimensional (2D) materials with a great potential for sensor applications due to their high aspect ratio and fully functionalized surface that can be tuned for specific gas adsorption. Here, we demonstrate that the NbCT-based sensor exhibits high performance towards alcohol vapors at temperatures up to 300-350 °C, with the best sensitivity towards ethanol. We attribute the observed remarkable chemiresistive effect of this material to the formation of quasi-2D NbO sheets as the result of the oxidation of Nb-based MXenes.

View Article and Find Full Text PDF

Semitransparent perovskite solar cells (ST-PSCs) are increasingly important in a range of applications, including top cells in tandem devices and see-through photovoltaics. Transparent conductive oxides (TCOs) are commonly used as transparent electrodes, with sputtering being the preferred deposition method. However, this process can damage exposed layers, affecting the electrical performance of the devices.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on using magnetron-sputtering to create controlled metal nanoparticles, specifically Ag/MgO, for improved perovskite solar cells.
  • The Ag nanoparticles are deposited on a glass/FTO/TiO substrate, which is essential for the solar cell's front electrode, and their structural and oxidation resistance is thoroughly examined.
  • Optimizing the nanoparticle coverage leads to a significant 5% increase in power conversion efficiency, achieving a total efficiency of 17.8% for the engineered solar cells.
View Article and Find Full Text PDF