In nature, organisms living in extreme environmental conditions produce antifreeze proteins (AFPs) that prevent the growth of ice crystals and depress the freezing point of body fluids. In this study, three different peptides derived from the N-terminal sequence of the helical type I AFP HPLC6, along with a stapled derivative produced via on-resin microwave-assisted copper(I)-catalyzed azide-alkyne cycloaddition, were conjugated to gold nanoparticles. The aim of decorating the surface of the nanoparticles with multiple copies of the peptides was to combine the ice-binding capability of the peptides with the size of a nanoparticle, thus, mimicking the protein bulkiness to enhance the peptide antifreeze activity.
View Article and Find Full Text PDFCardiovascular diseases are the leading cause of death worldwide, claiming millions of lives every year. Cardiac tissue engineering has emerged as a versatile option for repairing cardiac tissue and helping its regeneration. The use of nanomaterials, particularly nanofiber-based scaffolds combined with biomolecular cues like peptides, has significantly improved the compatibility and efficacy of the scaffolds for cardiac tissue regeneration.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) have been recognized as a promising target for the development of new drugs, as proved by the growing number of PPI modulators reaching clinical trials. In this context, peptides represent a valid alternative to small molecules, owing to their unique ability to mimic the target protein structure and interact with wider surface areas. Among the possible fields of interest, bacterial PPIs represent an attractive target to face the urgent necessity to fight antibiotic resistance.
View Article and Find Full Text PDFPimasertib, a potent antiproliferative drug, has been extensively studied for treating cancers characterized by dysregulation in the ERK/MAPK signaling pathway, such as melanoma. However, its therapeutic efficacy would greatly benefit from an increased selectivity for tumour cells and a longer half-life. Such improvements may be achieved by combining the rational design of a prodrug with its encapsulation in a potential nanodelivery system.
View Article and Find Full Text PDFIntroduction: Neutrophil extracellular traps (NETs) are complex structures released by activated neutrophils that may modulate different steps of the metastatic cascade. The aim of our study was to investigate how NETs can modulate the adhesion properties of cancer cells and whether cell exposure to NETs can activate the epithelial-to-mesenchymal transition (EMT) program thus enhancing the migratory and invasive properties of tumor cells.
Materials And Methods: Different cancer cell lines were subjected to a solid-phase adhesion assay using NET-coated plates with or without the addition of antibodies against α5β1 or CCDC25 receptor.