Publications by authors named "S Peers"

Lipopeptides produced by display many activities (surfactant, antimicrobial, and antitumoral), which make them interesting compounds with a wide range of applications. During the past years, several processes have been developed to enable their production and purification with suitable yield and purity. The already implemented processes mainly end with a critical drying step, which is currently achieved by freeze-drying.

View Article and Find Full Text PDF

In today's biomedical research, a huge effort is being made towards the development of efficient drug delivery systems, achieving sustainable and controlled delivery of drugs. Chitosan (CS) hydrogels are high water content materials with very relevant biological properties to that purpose. Their use for a local and delayed delivery has already been demonstrated for a wide variety of therapeutic agents.

View Article and Find Full Text PDF

Sustainable and controlled delivery of drugs is at the centre of a huge amount of undertaken researches. The ability of hydrogels, high water content materials, to achieve a local and delayed-delivery has already been demonstrated for a wide variety of therapeutic agents and various polymer natures. In particular, chitosan, a natural polymer, stands out as a first choice material for hydrogels elaboration in biomedical, cosmetic, and health related applications, owing to its interesting properties (as biocompatibility, biodegradability, antimicrobial capacity, and mucoadhesivity).

View Article and Find Full Text PDF

This work describes the characterization of an original liposomes/hydrogel assembly, and its application as a delayed-release system of antibiotics and anaesthetics. This system corresponds to drug-loaded liposomes entrapped within a chitosan (CS) physical hydrogel. To this end, a suspension of pre-formed 1,2-dipalmitoyl-sn-glycero-3-phosphocoline liposomes loaded with an antibiotic (rifampicin, RIF), an anaesthetic (lidocaine, LID), or a model fluorescent molecule (carboxyfluorescein, CF), was added to a CS solution.

View Article and Find Full Text PDF

Lipid/chitosan (CS) particle assemblies have recently been developed as new promising carriers for drug delivery applications. The present work reports for the first time the formation of such assemblies by a simple spontaneous adsorption of lipid membranes onto the CS particle surfaces. As shown by dynamic light scattering (DLS) measurements, final non-aggregated assemblies with relatively satisfactory size distributions were obtained by using this process.

View Article and Find Full Text PDF