Purpose To evaluate the ability of a semiautonomous artificial intelligence (AI) model to identify screening mammograms not suspicious for breast cancer and reduce the number of false-positive examinations. Materials and Methods The deep learning algorithm was trained using 123 248 two-dimensional digital mammograms (6161 cancers) and a retrospective study was performed on three nonoverlapping datasets of 14 831 screening mammography examinations (1026 cancers) from two U.S.
View Article and Find Full Text PDFStroke is a leading cause of death and disability. The ability to quickly identify the presence of acute infarct and quantify the volume on magnetic resonance imaging (MRI) has important treatment implications. We developed a machine learning model that used the apparent diffusion coefficient and diffusion weighted imaging series.
View Article and Find Full Text PDFPurpose: To develop a Breast Imaging Reporting and Data System (BI-RADS) breast density deep learning (DL) model in a multisite setting for synthetic two-dimensional mammographic (SM) images derived from digital breast tomosynthesis examinations by using full-field digital mammographic (FFDM) images and limited SM data.
Materials And Methods: A DL model was trained to predict BI-RADS breast density by using FFDM images acquired from 2008 to 2017 (site 1: 57 492 patients, 187 627 examinations, 750 752 images) for this retrospective study. The FFDM model was evaluated by using SM datasets from two institutions (site 1: 3842 patients, 3866 examinations, 14 472 images, acquired from 2016 to 2017; site 2: 7557 patients, 16 283 examinations, 63 973 images, 2015 to 2019).
In the context of dynamic emission tomography, the conventional processing pipeline consists of independent image reconstruction of single-time frames, followed by the application of a suitable kinetic model to time-activity curves (TACs) at the voxel or region-of-interest level. Direct 4D positron emission tomography (PET) reconstruction, by contrast, seeks to move beyond this scheme and incorporate information from multiple time frames within the reconstruction task. Established direct methods are based on a deterministic description of voxelwise TACs, captured by the chosen kinetic model, considering the photon counting process the only source of uncertainty.
View Article and Find Full Text PDFPurpose: To compare the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo).
Methods: MoCo PET/DCE-MRI of the upper abdomen was acquired in 44 consecutive oncologic patients and compared with non-MoCo PET/MRI. SUVmax and MTV of FDG-avid upper abdominal malignant lesions were assessed on MoCo and non-MoCo PET images.