Publications by authors named "S Pauillac"

Epsilon toxin is one of the four major toxins of Clostridium perfringens. It is the third most potent clostridial toxin after botulinum and tetanus toxins and is thus considered as a potential biological weapon classified as category B by the Centers for Disease Control and Prevention (CDC). In the case of a bioterrorist attack, there will be a need for a rapid, sensitive and specific detection method to monitor food and water contamination by this toxin, and for a simple human diagnostic test.

View Article and Find Full Text PDF

Clostridium sordellii lethal toxin (TcsL) is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT) family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP)-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability.

View Article and Find Full Text PDF

Clostridium sordellii lethal toxin (TcsL) is a potent virulence factor belonging to the large clostridial glucosylating toxin family. TcsL enters target cells via receptor-mediated endocytosis and delivers the N-terminal catalytic domain (TcsL-cat) into the cytosol upon an autoproteolytic process. TcsL-cat inactivates small GTPases including Rac and Ras by glucosylation with uridine-diphosphate (UDP)-glucose as cofactor leading to drastic changes in cytoskeleton and cell viability.

View Article and Find Full Text PDF

Epsilon toxin (ET) is produced by Clostridium perfringens types B and D and causes severe neurological disorders in animals. ET has been observed binding to white matter, suggesting that it may target oligodendrocytes. In primary cultures containing oligodendrocytes and astrocytes, we found that ET (10(-9) M and 10(-7) M) binds to oligodendrocytes, but not to astrocytes.

View Article and Find Full Text PDF

Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells.

View Article and Find Full Text PDF