Publications by authors named "S Pasquet"

Nursing education is stressful and vulnerable. Students, like high-level athletes, are subject to performance objectives. In addition to the educational support systems, tools can be offered to students to prevent and treat the effects of stress in training.

View Article and Find Full Text PDF

Objective: Recently, we demonstrated that normal human bone marrow (hBM)-derived CD34(+) cells, released into the peripheral blood after granulocyte colony-stimulating factor mobilization, contain cell subpopulations committed along endothelial and cardiac differentiation pathways. These subpopulations could play a key role in the regeneration of post-ischemic myocardial lesion after their direct intracardiac delivery. We hypothesized that these relevant cells might be issued from very small embryonic-like stem cells deposited in the BM during ontogenesis and reside lifelong in the adult BM, and that they could be mobilized into peripheral blood by granulocyte colony-stimulating factor.

View Article and Find Full Text PDF

Background Aims: Starting from experimental data proposing hematopoietic stem cells as candidates for cardiac repair, we postulated that human peripheral blood (PB) CD34+ cells mobilized by hematopoietic growth-factor (G-CSF) would contain cell subpopulations capable of regenerating post-ischemic myocardial damages.

Methods: In a phase I clinical assay enrolling seven patients with acute myocardial infarct, we directly delivered to the injured myocardium autologous PB CD34+ cells previously mobilized by G-CSF, collected by leukapheresis and purified by immunoselection. In parallel, we looked for the eventual presence of cardiomyocytic and endothelial progenitor cells in leukapheresis products of these patients and controls, using flow cytometry, reverse transcription-quantitative (RTQ)-polymerase chain reaction (PCR), cell cultures and immunofluorescence analyzes.

View Article and Find Full Text PDF

In vertebrates, the actin-binding proteins tropomyosins are encoded by four distinct genes that are expressed in a complex pattern during development and muscle differentiation. In this study, we have characterized the transcriptional machinery of the alpha-tropomyosin (alpha-Tm) gene in muscle cells. Promoter analysis revealed that a 284-bp proximal promoter region of the Xenopus laevis alpha-Tm gene is sufficient for maximal activity in the three muscle cell types.

View Article and Find Full Text PDF

Unlike skeletal and cardiac muscle cells that differentiate irreversibly, smooth muscle cells (SMCs) retain a high degree of plasticity. During the so-called phenotypic modulation, SMCs can undergo transition between a contractile phenotype and a highly proliferative synthetic phenotype, as apparent from the extinction of numerous smooth muscle (SM) markers when they are passaged in culture. It would be very useful to have an SMC line that can be indefinitely propagated for the cellular and molecular analysis of the mechanisms that underlie the control of SM differentiation.

View Article and Find Full Text PDF